About the Guide

Spring 2014

NASA missions, educational projects around the country, and cosmologists themselves have produced a wide range of materials that astronomy instructors (and their students) can use to learn about the latest developments in modern cosmology. Too often, however, these materials go unused because instructors are not familiar with them or don’t have them accessible at the time that they need them. This annotated guide is designed to highlight useful materials on the web and in print. It was produced in consultation with a panel of Astronomy 101 instructors, who were interviewed about their teaching, and NASA education specialists, who suggested resources that may not have been well known.

Cosmology is an enormous field, and the number of educational resources can be a bit overwhelming. This guide includes only a sampling of non-technical materials that instructors around the U.S. have been using and are likely to have access to. Items were selected based on their level of difficulty (Astro 101 level and below), the likelihood of easy access by a college audience, and their potential usefulness for teaching and learning.

Please note that cosmology is a fast-developing field and some resources fall out of date within a couple of years. We will make every effort to update this guide on a yearly basis, so please check the date under the title to ensure you have the most recent version.

Compiled by Andrew Fraknoi (Foothill College and Astronomical Society of the Pacific)

Coordination: NASA Astrophysics Science Education and Public Outreach Forum

Cover Image: An all-sky image of the cosmic microwave background. Credit: NASA/WMAP Science Team

TABLE OF CONTENTS:

Selected Web Sites on Modern Cosmology
Animations and Simulations on the Web
Selected Web Sites on the History of Cosmology
Selected Talks on Cosmology Available on the Web
Some Cosmology Lab Activities on the Web
Selected Books about Modern Cosmology
Selected Books about the History of Cosmology
Overview Articles:
 Articles about Dark Energy and Acceleration
 Articles about Inflation
 Articles about the Study of the Cosmic Microwave Background
 Articles about Dark Matter
 Articles about Other Specific Topics in Modern Cosmology
 Articles about “Far Out” Ideas in Cosmology
 Articles about Understanding Cosmological Distances
 A Few Articles about the History of Cosmology
Papers and Articles on Teaching Cosmology
Notes and Acknowledgements
A graphic cosmic timeline, from the Big Bang to the present day. Note that the present day is denoted as 13.7 billion years after the Big Bang, but has been refined to 13.8 billion years by recent Planck results. At time of printing, no cosmic timeline diagrams have been amended with the revised age. (Credit: NASA/WMAP Science Team)

NASA Resources

NASA Universe Forum Big Bang Pages (Harvard-Smithsonian Center for Astrophysics): http://www.cfa.harvard.edu/seuforum/bigbanglanding.htm (brief, basic introduction to some of the key ideas)

Planck Mission Education and Outreach Materials (Caltech): http://planck.caltech.edu/epo/epo-intro.html (some basic, some more advanced, information, focusing on the cosmic microwave background radiation)

Dark Energy (Part of the Hubble Discoveries Series): http://hubblesite.org/hubble_discoveries/dark_energy/ (Flash-based multimedia tutorial on the discovery and meaning of dark energy; includes information on the origin and fate of universe)

Resources from Other Sources

Sean Carroll’s Cosmology Primer (Caltech): http://preposterousuniverse.com/writings/cosmologyprimer/index.html (Astrophysicists Carroll offers a non-technical site with brief overviews of many key topics in modern cosmology.)

Ned Wright’s Cosmology Tutorial (UCLA): http://www.astro.ucla.edu/~wright/cosmolog.htm (Astronomer Wright keeps a rich web site where he explains many ideas in cosmology using basic algebra and geometry.)

The Universe Adventure (Lawrence Berkeley Labs): http://www.universeadventure.org/index.html (A flashy introduction to cosmology, designed for the public, but probably best read by those who already know a bit.)

Everyday Cosmology: http://cosmology.carnegiescience.edu/ (An educational website from the Carnegie Observatories with a timeline of cosmological discovery, background materials, and activities.)

Great Debates in Astronomy: http://apod.nasa.gov/diamond_jubilee/debate.html (Between 1995 and 1998, astronomers Robert Nemiroff & Jerry Bonnell put together some cosmological debates in the same hall at the Smithsonian’s Museum of Natural History (and along the same lines) as the Shapley-Curtis debate, with some of the leading cosmologists of our day; sometimes technical)

Brent Tully’s “How Big is the Universe?”: http://www.pbs.org/wgbh/nova/space/how-big-universe.html (This clear essay by a noted astronomer summarizes some key ideas in cosmologist and introduces the notion of the acceleration of the universe; it was written for the Runaway Universe program)
NASA Resources

Jellybean Visual Analogy for the Fraction of Ordinary Matter in the Universe (Chandra animation):
 http://chandra.harvard.edu/resources/flash/univ_pie.html

The Chemical Universe (NASA’s Chandra X-ray Observatory page with an “astronomer’s version” of the periodic table, showing the cosmic abundances of elements):
 http://chandra.harvard.edu/resources/flash/periodic_tables.html (Click on “Periodic table for astronomy”)

Cosmology Visualizations from the NASA Universe Forum: http://www.cfa.harvard.edu/seuforum/einstein/resources_visual.htm#featcos (A series of computer visualizations of the evolution and structure of the universe, available in a number of formats.)

WMAP Mission Concept Animations: http://map.gsfc.nasa.gov/resources/animconcepts.html (Brief animation showing evolution of the early universe and ideas associated with studying the cosmic microwave background)

The Cosmic Microwave Background on a Beach Ball (An inflatable globe with the full-sky image of the microwave background from the WMAP Mission): http://map.gsfc.nasa.gov/resources/edactivity1.html

Resources from Other Sources

Origin of the Elements (Flash movie from Don York’s group at the U. of Chicago): http://ecuip.lib.uchicago.edu/originsoftheelements/

Supercomputer simulations of the formation of structure in the universe by Andrey Kravstov: http://cosmicweb.uchicago.edu/sims.html

Making Galaxies: http://svl.adlerplanetarium.org/astroviz/makinggalaxies.html (8-min movie on evolution and large-scale structure of galaxies from the Adler Planetarium Visualization Lab)

Selected Web Sites on the History of Cosmology

NASA Resources

Cosmic Times Project (from NASA’s Goddard Space Flight Center): http://cosmictimes.gsfc.nasa.gov/ (James Lochner and Barbara Mattson have compiled a rich resource of 20th-century cosmology history in the form of news reports on key events)

Resources from Other Sources

Cosmic Journey: A History of Scientific Cosmology (from the American Institute of Physics Center for the History of Physics): http://www.aip.org/history/cosmology/ (a web “exhibit” on the history of our thinking, with images and biographies)

Brief Profile of Georges Lemaitre: http://www.amnh.org/education/resources/rfl/web/essaybooks/cosmic/p_lemaitre.html (from the American Museum of Natural History, an excerpt from the book Cosmic Horizons)

Short Videos from the Texas Cosmology Center: http://www.tcc.utexas.edu/video.html

Selected Talks on Cosmology Available on the Web

Marcia Bartusiak: “The Day We Found the Universe” (May 21, 2009; the distinguished science writer discusses Hubble’s work and the discovery of the expansion of the cosmos—one of the Observatory Night lectures at the Harvard-Smithsonian Center for Astrophysics): http://www.cfa.harvard.edu/events/mon_video_archive09.html
Roger Blandford (Stanford Linear Accelerator Center): “The Runaway Universe” (Oct. 26, 2004; public lecture on the discovery and meaning of cosmic acceleration and dark energy):

http://www.astrosociety.org/education/podcast/index.html

Sean Carroll (Caltech): “The Origin of the Universe and the Arrow of Time” (Aug. 13, 2010; Google Tech Talk):

Brian Schmidt’s non-technical Nobel Prize lecture about discovering the acceleration of the universe (Dec. 8, 2011); on the same page, you can find links to the lectures by Adam Riess and Saul Perlmutter, which connect to and follow his: http://www.nobelprize.org/mediaplayer/index.php?id=1727

George Smoot’s Nobel Prize lecture (Dec. 8, 2006) on his work with the COBE Satellite:
http://www.nobelprize.org/mediaplayer/index.php?id=75

“New Light on Dark Energy” (Apr. 25, 2011 panel on cosmology from the Lawrence Berkeley National Laboratory):
http://www.youtube.com/user/BerkeleyLab?feature=mhum#p/a/u/0/K171B6EvA6c
Some Cosmology Lab Activities on the Web

The Hubble Ultra-Deep Field image, showing some of the faintest galaxies ever observed. (Credit: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team)

NASA’s Universe Forum developed a series of “Modeling the Universe” activities which could be adapted to be part of a lab section or a class activity sequence. Generally for grades 8 - 12. See: http://www.cfa.harvard.edu/seuforum/learningresources.htm#lesson

Hubble’s Law Lab (shorter) (U. of Washington): http://www.astro.washington.edu/courses/labs/clearinghouse/labs/HubbleLaw/hubbles_law_procedure.html (Derive Hubble’s constant from galaxy data and calculate the Hubble time; for university students.)

Hubble’s Law Lab (longer) (U. of Washington): http://www.astro.washington.edu/courses/labs/clearinghouse/labs/HubbleLaw/hubbletitle.html (A longer version of the above lab, which includes more discussion of the nature of galaxies.)

The CLEA Project (Gettysburg College) has two college-level cosmology labs, one on the Hubble Law and one on the large-scale structure of the universe. Go to: http://www3.gettysburg.edu/~marschal/clea/CLEAhome.html and click on the software button.
Selected Books about Modern Cosmology

Carroll, Sean *From Eternity to Here: The Quest for the Ultimate Theory of Time*. 2010, Plume Books. On modern ideas of time as they relate to cosmology.

Duncan, Todd & Tyler, Craig *Your Cosmic Context: An Introduction to Modern Cosmology*. 2009, Addison-Wesley/Pearson. The first non-majors textbook on cosmology done without a lot of math.

Harrison, Edward *Cosmology: The Science of the Universe*, 2nd ed. 2000, Cambridge U. Press. This literate and thought-provoking introductory textbook, using some math, is one of the best guides to thinking about cosmology.

Livio, Mario *The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos*. 2000, John Wiley. Beautifully written, layperson’s introduction to key cosmological ideas of our day.

Silk, Joseph *The Big Bang*, 3rd ed. 2001, W. H. Freeman. A cogent introduction to the universe and our observations relating to it, for the intelligent layperson.

Selected Books about the History of Cosmology

Frank, Adam *About Time: Cosmology and Culture at the Twilight of the Big Bang*. 2011, Free Press. A history of human concepts of time as they relate to the universe at large.

Gleiser, Marcelo *The Dancing Universe: From Creation Myths to the Big Bang*. 1997, Dutton. A physicist chronicles the long history of human thinking about the origin of the universe.

Guth, A. *The Inflationary Universe*. 1997, Addison-Wesley. One of the key scientists responsible for the inflationary hypothesis describes how it came about.

Nussbaumer, Harry & Bieri, Lydia *Discovering the Expanding Universe*. 2009, Cambridge U. Press. Carefully researched, detailed history of both the theory and the observations that led to our modern day view.
ARTICLES

Overview Articles

Kruesi, L. “Cosmology: 5 Things You Need to Know” in Astronomy, May 2007, p. 28. Five questions students often ask, and how modern cosmologists answer them.

Pendrick, D. “Is the Big Bang in Trouble?” in Astronomy, Apr. 2009, p. 48. This sensationally titled article is really more of a quick review of how modern ideas and observations are fleshing out the big bang hypothesis (and raising questions.)

Wakeley, S. “The Universe is in the Details” in Astronomy, Sep. 2006, p. 42. 5-page overview of how particle physics can assist cosmology.

Articles about Dark Energy and Acceleration

Appell, D. “Dark Forces at Work” in Scientific American, May 2008, p. 100. A profile of Nobel laureate Saul Perlmutter, the leader of one of the teams whose work with supernovae led to the discovery of the universe’s acceleration.
Carroll, S. “Dark Energy & the Preposterous Universe” in Sky & Telescope, Mar. 2005, p. 32. 7-page review; explains the observations and gives candidates for the source of dark energy.

Conselice, C. “The Universe’s Invisible Hand” in Scientific American, Feb. 2007, p. 34. An introduction to dark energy and the effects it has on the structure and evolution of the universe.

Kruesi, L. “Will Dark Energy Tear the Universe Apart?” in Astronomy, Feb. 2009, p. 34. On how acceleration will determine the ultimate fate of the universe.

Articles about Inflation

Articles about the Study of the Cosmic Microwave Background

Comparison of observations of the cosmic microwave background (CMB) in 10-square-degree patches from (from left to right) COBE, WMAP, and Planck. The comparison illustrates how the resolution of these images improves with each successor (left to right). (Credit: NASA/JPL-Caltech/ESA)

Dorminey, B. “Europe’s Space Revolution” in *Astronomy*, Sep. 2008, p. 28. Preview of Herschel and Planck missions and how they will study the CMB.

Composite visible light and x-ray enhanced color image of galaxy cluster IE 0657-56, which is used as strong evidence for the existence of dark matter. (Credit: Xray: NASA/CXC/CGA/M. Markevitch et al.; Optical: NASA/STScI; Magellan/U. Arizona/D. Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U. Arizona/D. Clowe et al.)

Articles about Dark Matter

Kruesi, L. “What do We Really Know about Dark Matter?” in *Astronomy*, Nov. 2009, p. 28. Focuses on what dark matter could be and experiments to find out.

Articles about Other Specific Topics in Modern Cosmology

Dorminey, B. “Where Has All the Lithium Gone?” in *Astronomy*, Feb. 2011, p. 42. What we can learn about the early stages of the universe from the abundance of this light element.

Frank, A. “How the Big Bang Forged the First Elements” in *Astronomy*, Oct. 2007, p. 32. On how the hot phase of the big bang synthesized elements, and what their abundance today can tell us about the properties of the universe.

Strauss, M. “Reading the Blueprints of Creation” in *Scientific American*, Feb. 2004, p. 54. On large-scale surveys of galaxies and what they tell us about the organization of the early universe.
Articles about New Ideas in Cosmology

Barrow, J. & Webb, J. “Inconstant Constants: Do the Inner Workings of Nature Change with Time?” in *Scientific American*, June 2005, p. 56. Possible astronomical evidence that the fine-structure constant has changed over cosmic periods.

Bojowald, M. “Follow the Bouncing Universe” in *Scientific American*, Oct. 2008, p. 44. On theories of quantum gravity, and a universe that may have had events before the big bang.

Tegmark, M. “Parallel Universes” in *Scientific American*, May 2003, p. 40. Ideas about a “multiverse”: physical theories that permit or demand other universes.

Veneziano, G. “The Myth of the Beginning of Time” in *Scientific American*, May 2004, p. 54. Ideas from string theory about space, time, and branes that pre-date the big bang.
Articles about Understanding Cosmological Distances

A Few Articles about the History of Cosmology

Papers and Articles on Teaching Cosmology

Notes

This Guide is intended to support the higher education community by making relevant NASA Science Mission Directorate E/PO materials and other resources of potential interest easier to find. NASA-supported education products have passed NASA's Education Product Review. The selection of non-NASA materials and any opinions expressed in the Guide are those of the compiler, and do not imply endorsement by NASA or the Astrophysics Science Education and Public Outreach Forum.

Comments about the Cosmology Resource Guide and the needs of the astrophysics higher education community can be directed to the Astrophysics Forum Liaison to the NASA Science Mission Directorate Higher Education Working Group: Greg Schultz (Astronomical Society of the Pacific), gschultz {at} astrosociety.org.

Acknowledgements

The Cosmology Resource Guide was produced in collaboration with the NASA Astrophysics education and public outreach (E/PO) community. We also gratefully acknowledge the Astronomy 101 instructors whose input on the needs of the higher education community helped shape this Guide.

Contributing NASA Astrophysics E/PO programs include: Astronomy Picture of the Day, the Chandra X-ray Observatory, the Hubble Space Telescope, the NASA Goddard Astrophysics Science Division, the Planck mission, the Sonoma State University E/PO group (Fermi, NuSTAR, Swift, XMM-Newton, Using the Big Ideas in Cosmology), the former Structure and Evolution of the Universe Education Forum, the University of Arizona / JPL Exoplanet Exploration Program Center for Astronomy Education, the University of Chicago E/PO group, and the Wilkinson Microwave Anisotropy Probe (WMAP).